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What does it mean, to see? The plain man’s answer (and
Aristotle’s too) would be, to know what is

where by looking. In other words, vision is the process of
discovering from images what is present in

the world, and where it is.

*(1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual
Information. San Francisco: W. H. Freeman and Company.
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Learning a Weight Map

A generic approach that does not assume anything on the Al model

)

Pre-trained
f
4 )

A 4

A 4

T. Shaharabany, L. Wolf. Learning a Weight Map for Weakly-Supervised Localization. ICASSP 23’



Learning a Weight Map

A generic approach that does not assume anything on the Al model

)

Pre-trained

T. Shaharabany, L. Wolf. Learning a Weight Map for Weakly-Supervised Localization. ICASSP 23’




Learning a Weight Map

A generic approach that does not assume anything on the Al model

)

Pre-trained

T. Shaharabany, L. Wolf. Learning a Weight Map for Weakly-Supervised Localization. ICASSP 23’




Learning a Weight Map

A generic approach that does not assume anything on the Al model

IoM
S(ToM)
é Sh‘fu*ed E ;
E weights é f(]) 'C‘:,‘E
-
i :

T. Shaharabany, L. Wolf. Learning a Weight Map for Weakly-Supervised Localization. ICASSP 23’




Learning a Weight Map

A generic approach that does not assume anything on the Al model

R
IoM
S(ToM)

g {7
é Sh‘fu*ed E ;
E weights é f(]) 'C‘:,‘E
-
i :

T. Shaharabany, L. Wolf. Learning a Weight Map for Weakly-Supervised Localization. ICASSP 23’




Learning a Weight Map

State of the art in weakly supervised (1) detection and (2) segmentation

Method GT-known  Topl Topl
loc[%] loc[%]  cls[%] Method GT-known-loc[%] Topl-loc[%]
ACoL (Zhang, 2018) 59.30 4592 7190 .. "
SPG (Zhang, 2018) 58.90 48.90 ) fnt_uCAM (Qm_, 2019) 57.79 43.34
DANet (Xue, 2019) 6700 5252 7540 infoCAM+ (Qin, 2019) 57.71 43.07
RCAM (Zhang, 2020) 70.00 53.00 - Ours (method 1) 60.21 43.80
ADL (Choe, 2019) 75.40 53.04 80.34 Ours (method II) 60.41 44.00
12C (Zhang, 2020) 72.60 5599  76.70
infoCAM+ (Qin, 2019) 75.89 5435 7397 Table 3. Results for Tiny-imagenet. In all methods, the classifier
PsyNet (Baek, 2020) 80.32 5797 69.67 is a ResnetS0.
RDAP (Choe, 2021) 82.36 65.84  75.56
ART (Singh, 2020) 82.65 65.22 77.51 CUB dataset 3.
Ours (method ) 82.85 67.00  79.56 Method PxAP Method PxAP Stanford Flowers dataet
Ours (method II) 83.03 67.12  79.56 CAM [51] 62.57 CAM [51] 69.0
Table 1. Results on the CUB benchmark ART [36] 75.45 HaS [35] 63.1
Ours (method I)  76.30 ADL [¢] 69.8
Method GT-known Topl  Topl Ours (method 1) 76.70 RDAP [0] 71.4
loc[%]  loc[%] cls[%] Ours (method I)  75.6
CAM (Zhou, 2016) 65.2 56.8 88.9 Table 4. Results for CUB [41]  Ours (method II) 75.2
HaS (Singh, 2017) 87.4 76.6 87.6 segmentation. The PxAP score
ADL (Choe, 2019) 82.8 73.8 88.9 aggregates the average preci-  Table 5. Results for oxford
RDAP (Choe, 2021) 92.9 84.1 89.7 sion over multiple thresholds. flowers segmentation.
Ours (method I) 96.1 84.9 87.9
Ours (method II) 95.1 83.7 87.9

Table 2. Results for the Stanford cars benchmark. Stanford cars dataset
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Weakly Supervised Phrase Grounding Algorithms
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Our Solution - What is Where by Looking (WWbL)
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T. Shaharabany, Y. Tewel, L. Wolf. What is Where by Looking (WWbL) — Weakly-Supervised Open-World Phrase-
Grounding without Text Inputs. NeurlPS’'22



Architecture - What is Where by Looking (WWbL)
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Similarity Maps for Phrase Grounding
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Method — Maps Selection
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Method — Maps Selection
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Method — Maps Selection
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Method — Fine-tune
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Box-based Refinement for Phrase Grounding
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Box-based Refinement for Phrase Grounding
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Visualization — What is Where by Looking
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Learning a Weight Map
Slmllarlty Maps fOF Phrase Grounding A generic approach that does not assume anything on the Al model
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