

Open-Vocabulary Weakly Supervised Visual Recognition Algorithms

Tal Shaharabany Under the Supervision of Prof. Lior Wolf

What does it mean, to see? The plain man's answer (and Aristotle's too) would be, to know what is where by looking. In other words, vision is the process of discovering from images what is present in the world, and where it is.

•(1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman and Company.

Landscape

Name	Open-world	Weakly supervised	Purely visual
Object Detection	Х	X	V
Phrase-Grounding	V	X	Х
Weakly supervised localization	Х	V	V
Weakly supervised Phrase-Grounding	V	V	Х
What is where by looking (WWbL)	V	V	V

Object Detection

Name	Open-world	Weakly supervised	Purely visual
Object Detection	Х	X	V
Phrase-Grounding	V	Х	Х
Weakly supervised localization	Х	V	V
Weakly supervised Phrase-Grounding	V	V	Х
What is where by looking (WWbL)	V	V	V

Phrase-Grounding

Name	Open-world	Weakly supervised	Purely visual
Object Detection	Х	X	V
Phrase-Grounding	V	X	x
Weakly supervised localization	Х	V	V
Weakly supervised Phrase-Grounding	V	V	Х
What is where by looking (WWbL)	V	V	V

A young baby crawls across the wood floor towards the water bottle

Weakly supervised localization

Name	Open-world	Weakly supervised	Purely visual
Object Detection	Х	Х	V
Phrase-Grounding	V	Х	Х
Weakly supervised localization	X	V	V
Weakly supervised Phrase-Grounding	V	V	Х
What is where by looking (WWbL)	V	V	V

A generic approach that does not assume anything on the AI model

A generic approach that does not assume anything on the AI model

A generic approach that does not assume anything on the AI model

A generic approach that does not assume anything on the AI model

A generic approach that does not assume anything on the AI model

State of the art in weakly supervised (1) detection and (2) segmentation

Method	GT-known loc[%]	Top1 loc[%]	Top1 cls[%]
CAM (Zhou, 2016)	56.00	43.67	80.65
ACoL (Zhang, 2018)	59.30	45.92	71.90
SPG (Zhang, 2018)	58.90	48.90	-
DANet (Xue, 2019)	67.00	52.52	75.40
RCAM (Zhang, 2020)	70.00	53.00	-
ADL (Choe, 2019)	75.40	53.04	80.34
I2C (Zhang, 2020)	72.60	55.99	76.70
infoCAM+ (Qin, 2019)	75.89	54.35	73.97
PsyNet (Baek, 2020)	80.32	57.97	69.67
RDAP (Choe, 2021)	82.36	65.84	75.56
ART (Singh, 2020)	82.65	65.22	77.51
Ours (method I)	82.85	67.00	79.56
Ours (method II)	83.03	67.12	79.56

CUB dataset

Stanford cars dataset

Method	GT-known-loc[%]	Top1-loc[%]
CAM (Zhou, 2016)	54.56	40.55
infoCAM (Qin, 2019)	57.79	43.34
infoCAM+ (Qin, 2019)	57.71	43.07
Ours (method I)	60.21	43.80
Ours (method II)	60.41	44.00

Table 3. Results for Tiny-imagenet. In all methods, the classifier is a Resnet50.

Method	PxAP	Method
CAM [51]	62.57	CAM [51]
ART [36]	75.45	HaS [35]
Ours (method I)	76.30	ADL [8]
Ours (method II)	76.70	RDAP [6]
		Ours (meth

Table 4. Results for CUB [41] segmentation. The PxAP score aggregates the average precision over multiple thresholds.

	Method	PxAP
	CAM [51]	69.0
	HaS [35]	63.1
	ADL [8]	69.8
	RDAP [6]	71.4
	Ours (method I)	75.6
11	Ours (method II)	75.2

Table 5. Results for oxfordflowers segmentation.

Stanford Flowers dataset

Table 1. Results on the CUB benchmark

Method	GT-known loc[%]	Top1 loc[%]	Top1 cls[%]
CAM (Zhou, 2016)	65.2	56.8	88.9
HaS (Singh, 2017)	87.4	76.6	87.6
ADL (Choe, 2019)	82.8	73.8	88.9
RDAP (Choe, 2021)	92.9	84.1	89.7
Ours (method I)	96.1	84.9	87.9
Ours (method II)	95.1	83.7	87.9

Table 2. Results for the Stanford cars benchmark.

Weakly supervised Phrase-Grounding

Name	Open-world	Weakly supervised	Purely visual
Object Detection	Х	Х	V
Phrase-Grounding	V	Х	X
Weakly supervised localization	Х	V	V
Weakly supervised Phrase-Grounding	V	V	x
What is where by looking (WWbL)	V	V	V

Weakly Supervised Phrase Grounding Algorithms

Our Solution - What is Where by Looking (WWbL)

T. Shaharabany, Y. Tewel, L. Wolf. What is Where by Looking (WWbL) – Weakly-Supervised Open-World Phrase-Grounding without Text Inputs. NeurIPS'22

Architecture - What is Where by Looking (WWbL)

T. Shaharabany, Y. Tewel, L. Wolf. What is Where by Looking (WWbL) – Weakly-Supervised Open-World Phrase-Grounding without Text Inputs. NeurIPS'22

Similarity Maps for Phrase Grounding

K relevance maps

K relevance maps

Method – Fine-tune

 $L(I,t,\bar{M}) = L_{pseudo}(I,t,\bar{M}) + L_{fore}(I,t) + L_{back}(I,t) + L_{reg}(I,t)$

E. Gomel, T. Shaharabany, L. Wolf. **Box-based Refinement for Weakly Supervised and Unsupervised Localization Tasks.** In submission

E. Gomel, T. Shaharabany, L. Wolf. **Box-based Refinement for Weakly Supervised and Unsupervised Localization Tasks.** In submission

E. Gomel, T. Shaharabany, L. Wolf. **Box-based Refinement for Weakly Supervised and Unsupervised Localization Tasks.** In submission

E. Gomel, T. Shaharabany, L. Wolf. **Box-based Refinement for Weakly Supervised and Unsupervised Localization Tasks.** In submission

E. Gomel, T. Shaharabany, L. Wolf. **Box-based Refinement for Weakly Supervised and Unsupervised Localization Tasks.** In submission

What is where by looking (WWbL)

Name	Open-world	Weakly supervised	Purely visual
Object Detection	Х	X	V
Phrase-Grounding	V	X	Х
Weakly supervised localization	Х	V	V
Weakly supervised Phrase-Grounding	V	V	Х
What is where by looking (WWbL)	V	V	V

WWbL Algorithms

Proposed Algorithm

Proposed Algorithm

Proposed Algorithm

Visualization – What is Where by Looking

